GRE Prep Rate Time and Sequence

Rate Time and Sequence

Rate Time and Sequence

1. Two Cars travel in opposite directions starting from the same point. One car travels at a rate of 40 mph , and the other car travels at a rate 54 mph . How long will it take for the two cars to be 188 miles apart?

Rate Time and Sequence

2. Adam travels the first $\frac{2}{3} \mathrm{rd}$ of the distance from his home to football ground on bicycle and remaining on foot. What is the ratio of his speed on bicycle to his speed on foot if he takes twice as long on foot as on bicycle?

Rate Time and Sequence

3. The Earth travels around the Sun at a speed of approximately 18.5 miles per second. This approximate speed is how many miles per hour?
A. 1,080
B. 1,160
C. 64,800
D. 66,600
E. $3,996,000$

Rate Time and Sequence

4. On a certain day, Amanda bikes up a hill at the rate of 5 miles per hour and back down the hill, using the same route, at a rate of 15 miles per hour. What was Amanda's average speed, in miles per hour, on this biking trip?
A. 7.5
B. 8.75
C. 10
D. 11.25
E. 13

Rate Time and Sequence

5. Jan lives x floors above the ground floor of a high-rise building. It takes her 30 seconds per floor to walk down the steps and 2 seconds per floor to ride the elevator. If it takes Jan the same amount of time to walk down the steps to the ground floor as to wait for the elevator for 7 minutes and ride down, then x equals
A. 4
B. 7
C. 14
D. 15
E. 16

Rate Time and Sequence

6. A club decided to build a cabin. The job can be done by 3 skilled workmen in 20 days or by 5 of the boys in 30 days. How many days will the job take if all work together?
A. 5
B. 10
C. 12
D. $12 \frac{2}{3}$
E. 14

Rate Time and Sequence

7. A small factory with 3 machines has a job of stamping out a number of pan covers. The newest machine can do the job in 3 days, another machine can do it in 4 days, and the third machine can do it in 6 days. How many days will the factory take to do the job using all three machines?

Rate Time and Sequence

8. The 7 th and 21 st terms of an Arithmetic Progression are 6 and -22 respectively. What is the $26^{\text {th }}$ term of the series?

Rate Time and Sequence

9. A series of numbers $2,22,222 \ldots$ What is the hundreds place of the sum of the first 10 terms of the series?

Rate Time and Sequence

10. General term of a series is given as $\mathrm{t}_{\mathrm{k}}=\frac{1}{k}-\frac{1}{k+1}$. What is the sum of the first 100 terms of this series?

Rate Time and Sequence

11. John and Sarah drove from City A to City B using the same route. John drove at an average speed of $60 \mathrm{~km} / \mathrm{hr}$ for the first half of the distance and then increased his speed to $80 \mathrm{~km} / \mathrm{hr}$ for the second half of the distance. Sarah also droves the same distance but drove at a constant speed of $70 \mathrm{~km} / \mathrm{hr}$ for the entire trip.

Quantity A

John's average speed for the entire route

Quantity B

Sarah's average speed for
the entire route

Rate Time and Sequence

12. Working together, A and B can complete a work in 15 days, B and C can complete the same work in 10 days and A and C can complete that work in 12 days.

Quantity A

The number of days taken by A, B, and C working
together

Quantity B

9

Rate Time and Sequence

13. John takes x minutes to type 2700 words. He types at the rate of 1800 words per hour.

Quantity A

X

Quantity B
90 minutes

Rate Time and Sequence

14. $X=$ Sum of first 20 even natural numbers.
$Y=$ Sum of first 20 odd natural numbers.

Quantity A
$X+20$

Quantity B
Y

Rate Time and Sequence

15. The first five terms of the sequence are $0,5,5,0,-5$. In the series, any term after the second term can be defined by $t_{n+2}=t_{n+1}-t_{n}$.

Quantity A

Sum of first 50 terms

Quantity B

0

Rate Time and Sequence

16.

Quantity A
$\left(1-\frac{1}{2}\right)^{2} \times\left(1-\frac{1}{3}\right)^{2} \times\left(1-\frac{1}{4}\right)^{2} \ldots \ldots\left(1-\frac{1}{10}\right)^{2}$

Quantity B

$$
\frac{1}{121}
$$

Rate Time and Sequence

17.

Quantity A

$$
\frac{1}{81}+\frac{1}{82}+\frac{1}{83}+\cdots+\frac{1}{100}
$$

Quantity B
$\frac{1}{5}$

Rate Time and Sequence

18. Nine identical machines, each working at the same constant rate, can stitch 27 jerseys in 4 minutes. How many minutes would it take 4 such machines to stitch 60 jerseys?
A. 8
B. 12
C. 16
D. 18
E. 20

Rate Time and Sequence

19. One robot, working independently at a constant rate, can assemble a doghouse in 12 minutes. What is the maximum number of complete doghouses that can be assembled by 10 such identical robots, each working on separate doghouses at the same rate for 2.5 hours?
A. 20
B. 25
C. 120
D. 125
E. 150

Rate Time and Sequence

20. The sequence S is defined by $S_{n}=S_{n-1}+S_{n-2}+S_{n-3}-5$ for each integer $n \geq 4$. If $S_{1}=4, S_{2}=0$, and $S_{4}=-4$, what is the value of S_{6} ?
A. -2
B. -12
C. -16
D. -20
E. -24

QA

Thank you

