SAT Prep Advanced Math 2

CONCEPTS

QUESTIONS

1. What is the y -intercept of the function $\mathrm{y}=\mathrm{x}^{2}-4 \mathrm{x}+4$?

QUESTIONS

2. If $f(x)=3 x^{2}-2 x+4$, then $f(-2)$ is
A. -2
B. 20
C. -4
D. 12

QUESTIONS

3. If $f(x)=4 x-5$ and $g(x)=3^{x}$, then $f(g(2))=$
A. 27
B. 9
C. 3
D. 31

QUESTIONS

4. If $f(g(x))=4 x^{2}-8 x$ and $f(x)=x^{2}-4$, then $g(x)$ could be equal to?
A. $2 \mathrm{x}-2$
B. x
C. 4 x
D. $4-\mathrm{x}$

QUESTIONS

5. Given that $f(x)=3 x^{2}-4 x+1$ and $g(x)=3 x^{2}-3$, then the $\frac{f(x)}{g(x)}$ is undefined for which values of x ?
A. No values
B. 0
C. 3
D. $\{1,-1\}$

QUESTIONS

6. Given that $\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}-10}$, then for what values of x is the function defined?
A. $\mathrm{x}>10$
B. $x \leq 10$
C. $x<10$
D. $x \geq 10$

QUESTIONS

7. Which of the following equations has a vertex of $(3,-3)$?
A. $y=5(x-3)^{2}-3$
B. $y=5(x+3)^{2}-3$
C. $y=5(x-3)^{2}+3$
D. $y=5(x+3)^{2}+3$

QUESTIONS

8. $h(t)=-16 t^{2}+64 t$

The equation above expresses the approximate height, h , in feet, of a rocket t seconds after it is launched upwards from the ground until it hits the ground again. After how many seconds will the rocket reach its highest point?
A. 2
B. 4
C. 8
D. 16

QUESTIONS

9. The equation $y=(x-4)(x+8)$ represents a parabola in the $x y-p l a n e$. Which of the following is an equivalent form of this equation that shows the coordinates of the vertex of this parabola as constants or coefficients?
A. $y=(x+4)^{2}-8$
B. $y=(x-4)^{2}+8$
C. $y=(x+2)^{2}-36$
D. $y=(x+2)^{2}+36$

QUESTIONS

10. | Table A | | Table B | |
| :---: | :---: | :---: | :---: |
| x | $f(x)$ | x | $g(x)$ |
| -1 | 2 | 3 | -1 |
| 3 | 6 | 5 | 3 |
| 5 | 5 | 6 | 2 |

Table A above shows values that satisfy the function $f(x)$, and Table B shows values that satisfy the function $g(x)$. What is the value of $f(g(3))$?
A. -1
B. 2
C. 3
D. 5

QUESTIONS

11. What is the sum of all values that satisfy the equation $3 x^{2}+30 x+15=0$?
A. -10
B. $-4 \sqrt{5}$
C. $4 \sqrt{5}$
D. 10

QUESTIONS

12. The functions f, g, and h are defined by the equations $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}, \mathrm{~g}(\mathrm{x})=\mathrm{x}$, and $\mathrm{h}(\mathrm{x})=\sqrt{x}$. Which of the following must be true?
A. h $\left(\frac{1}{2}\right)<\mathrm{f}\left(\frac{1}{2}\right)<\mathrm{g}\left(\frac{1}{2}\right)$
B. $h\left(\frac{1}{2}\right)<g\left(\frac{1}{2}\right)<f\left(\frac{1}{2}\right)$
C. $g\left(\frac{1}{2}\right)<h\left(\frac{1}{2}\right)<f\left(\frac{1}{2}\right)$
D. $f\left(\frac{1}{2}\right)<g\left(\frac{1}{2}\right)<h\left(\frac{1}{2}\right)$

QUESTIONS

13. If $f(x-2)=3 x+n$, where n is a constant, and $f(2)=0$, then $f(n)=$
A. -42
B. -18
C. 6
D. 12

QUESTIONS

14. If $m>1$, which of the following could be the graph of $y=-(x+m)^{2}+m$ in the $x y-$ plane?
A.
B.

C.
D.

QUESTIONS

15. In the linear function $h, h(-2)=17$ and $h(2)=-3$. Which equation defines h ?
A. $h(x)=5 x-7$
B. $h(x)=3 x-9$
C. $h(x)=-7 x+3$
D. $h(x)=-5 x+7$

QUESTIONS

16. The function f is defined by the equation $\mathrm{f}(\mathrm{x})=\mathrm{x}-\mathrm{x}^{2}$. Which of the following represents a quadratic with no real zeros?
A. $\mathrm{f}(\mathrm{x})+\frac{1}{2}$
B. $\mathrm{f}(\mathrm{x})-\frac{1}{2}$
C. $\mathrm{f}\left(\frac{x}{2}\right)$
D. $\mathrm{f}\left(x-\frac{1}{2}\right)$

QUESTIONS

17. $g(x)=(x-10)(x+13)$

The function g is defined by the given equation. For what value of x does $g(x)$ reach its minimum?
A. -130
B. -13
C. $-23 / 2$
D. $-3 / 2$

QUESTIONS

18. In the xy-plane, a parabola has vertex $(3,-7)$ and intersects the x-axis at two points. If the equation of the parabola is written in the form $y=a x^{2}+b x+c$, where a, b, and c are constants, which of the following could be the value of $a+b+c$?
A. -20
B. -9
C. -7
D. -3

QUESTIONS

19. In the xy-plane, the function $f(x)=-9 x^{2}+30 x+c$, where c is a constant. If $f(x)$ has exactly one zero, what is the value of c ?
A. -53
B. -25
C. 0
D. 3

QUESTIONS

20. The function $A(x)=5 x^{2}$ gives the area of a triangle, in square $\mathrm{cm}\left(\mathrm{cm}^{2}\right)$. If one of its base is x cm and its corresponding height is 10 times of that base, which of the following is the best interpretation of $A(4)=80$?
A. If the base of the triangle is 4 cm , then the area of the triangle is $80 \mathrm{~cm}^{2}$.
B. the area is $4 \mathrm{~cm}^{2}$, then the base of the triangle is 80 cm .
C. If the base of the triangle is 4 cm , then the height of the triangle is 80 cm .
D. If the height of the triangle is 4 cm , then the area of the triangle is $80 \mathrm{~cm}^{2}$.

$Q A$

Thank you

