SAT Prep Advanced Math 3

CONCEPTS

QUESTIONS

1. If $x-3$ is a factor of the expression $x^{2}+k x+12$, what is the value of k ?
A. -7
B. -5
C. 5
D. 7

QUESTIONS

2. If the equation of a circle is given by $(x-3)^{2}+(y+5)^{2}+75=100$, then what is the radius of the circle?

QUESTIONS

3. What is the radius of a circle with the equation $x^{2}+y^{2}-6 x-8 y-75=0$?

QUESTIONS

4. A circle in the xy-plane has a diameter with endpoints $(-1,4)$ and $(-1,10)$. What is the y-coordinate of the centre of the circle?

QUESTIONS

5

The graph of $y=f(x)$ is shown, where the function is defined by $f(x)=a x^{3}+b x^{2}+c x+d$ and a, b, c, and d are constants. If $f(x)+k$ graph has only one x -intercept, then the value of k can lie between?
A. 2 and 4
B. 4 and 6
C. 5 and 7
D. 6 and 8

QUESTIONS

6. The parabola $y=-x^{2}+5 x+6$ is intersected by the line $y=-\frac{1}{2} x+12$. What is the y-coordinate of the intersection closest to the x -axis?

QUESTIONS

7. The graph of the function f in the xy-plane crosses the x-axis at $-4,2$, and 5 . Which of the following could define f ?
A. $f(x)=(x-2)^{2}(x-5)$
B. $f(x)=\left(x^{2}+2 x-8\right)(3 x-15)$
C. $f(x)=\left(x^{2}-7 x+10\right)(x-4)$
D. $f(x)=(x-4)(x+2)(x+5)$

QUESTIONS

8. In the $x y-p l a n e$, the graph of the line $y=\frac{15}{4}$ intersects the graph of the equation $y=x^{2}+x$ at two points. What is the distance between these two points?
A. $\frac{3}{2}$
B. $\frac{5}{2}$
C. $\frac{15}{4}$
D. 4

QUESTIONS

9.

The graph of $y=f(x)$ is shown. What is the y-intercept of $-f(x)+3$?

QUESTIONS

10.

The graph of $y=f(x)$ is shown. What is the y-intercept of $f(-x)+3$?

QUESTIONS

11. The function f is given as $f(x)=3 x-5$. Which table of values represents $y=f(x)-3$?
A.

x	y
-6	-26
-5	-8
4	1

B.
x
:---
-5
4

C.
x
:---
-6
-5
4

D. | x | y |
| :--- | :--- |
| -6 | -3 |
| -5 | -23 |
| 4 | 3 |

QUESTIONS

12. One of the factors of $f(x)=2 x^{3}+32 x^{2}+120 x$ is $x+k$, where k is a positive constant. What is the smallest possible value of k ?

QUESTIONS

13. $y=-1.5$

$$
y=x^{2}+8 x+a
$$

In the given system of equations, a is a positive constant. The system has exactly one distinct real solution. What is the value of a?

QUESTIONS

14. For the function h, the value $h(x)$ increases by 35% for every increase in the value of x by 2 . If $h(0)=20$, which equation defines h ?
A. $h(x)=20(1.35)^{2 x}$
B. $h(x)=20(1.35)^{x / 2}$
C. $h(x)=1.35(20)^{2 x}$
D. $h(x)=20(0.35)^{2 x}$

QUESTIONS

15. $\mathrm{p}(\mathrm{t})=1000(3)^{\mathrm{t} / 2}$

The growth of a certain kind of bacteria is observed and its population growth, p, t days from the first observation, is modeled by the function above. By how much does the bacterial population increase from $t=4$ to $t=6$?
A. 18,000
B. 16,000
C. 15,000
D. 14,000

QUESTIONS

16. A bacteria population, P , can be modelled by the equation $\left.\mathrm{P}=\mathrm{P}_{0} 3\right)^{0.2 t}$, where P_{0} is the bacteria population at the beginning of the experiment and t is the time in hours since the beginning of the experiment. How much time, in minutes, does it take for the bacteria population to become 9 times of P_{0} ?
A. 1
B. 60
C. 10
D. 600

QUESTIONS

In the xy-plane, the graph of $y=f(x)$ is the result of translating the graph of $y=g(x)$ down 5 units.

What is the value of $g(0)+1$?
A. -3
B. -2
C. 2
D. 8

$$
f(x)=x^{3}-2 x^{2}-3 x+2
$$

QUESTIONS

18. $f(x)=-m^{x}+n$, where m and n are constants. In the $x y$-plane, the graph of $y=f(x)-3$ has a $y-$ intercept at $\left(0,-\frac{25}{3}\right)$. If $m+n=20$, what is the value of m ?

QUESTIONS

19. What is the remainder when the expression $x^{3}+3 x^{2}+4 x+5$ is divided by $x-1$?

QUESTIONS

20. For a polynomial $\mathrm{q}(\mathrm{y})$, the value of $\mathrm{q}(-4)$ is 5 . Which of the following is true about $\mathrm{q}(\mathrm{y})$?
A. $y-5$ is a factor of $q(y)$.
B. $y+1$ is a factor of $q(y)$.
C. The remainder when $\mathrm{q}(\mathrm{y})$ is divided by $\mathrm{y}-5$ is -4 .
D. The remainder when $\mathrm{q}(\mathrm{y})$ is divided by $\mathrm{y}+4$ is 5 .

QUESTIONS

21. If the function f has four distinct zeros, which of the following could represent the complete graph of f in the xy-plane?
A.

B.

C.

D.

$Q A$

Thank you

