SAT Prep Algebra 2

CONCEPTS

QUESTIONS

1. The slope of the line perpendicular to the line $3 x+5 y+8=0$ is
A. $\frac{3}{5}$
B. $\frac{5}{3}$
C. $-\frac{3}{5}$
D. $-\frac{5}{3}$

QUESTIONS

2. The y-intercept of the line through the point whose coordinates are $(5,-2)$ and $(1,3)$ is
A. $\frac{5}{4}$
B. $-\frac{5}{4}$
C. 17
D. $\frac{17}{4}$

QUESTIONS

3. The length of the line segment joining the points with coordinates $(-2,4)$ and $(3,-5)$ is
A. 2.8
B. 10.3
C. 3.7
D. 10

QUESTIONS

4. If a line passes through the points $(-10,-18),(20,22)$ and $(x, 2)$, then what is the value of x.
A. -4
B. 6
C. 5
D. 4

QUESTIONS

5.

As shown in the xy-plane, if Line M is parallel to Line N, what is the value of A ?

QUESTIONS

6. What is the y co-ordinate of the midpoint of the line segment joining $(2,4)$ and $(10,20)$?

QUESTIONS

$$
\text { 7. } \quad \begin{array}{ll}
& x+y=20 \\
& 3 x+3 y=90
\end{array}
$$

How many solutions exist for the system of equations given above?

QUESTIONS

8. In the figure shown below what is slope of line $B C$ in the triangle $A B C$ with sides a ?

A. -1
B. $-\sqrt{ } 3$
C. $\sqrt{ } 3$
D. $-1 / \sqrt{ } 2$

QUESTIONS

9. Which of the following equations represents a line that is parallel to the line with the equation $y=-2 x+4 ?$
A. $2 x+4 y=0$
B. $-4 x+y=-2$
C. $-6 x-3 y=9$
D. $8 x-4 y=4$

QUESTIONS

10. $a x+3 y=c$
$6 x+9 y=15$
In the system of equations above, a and c are constants. If this system has infinitely many solutions, what is the value of $\frac{a}{c}$?

QUESTIONS

11. What is the equation of a line that contains the point $(1,6)$ and has a y-intercept of 4 ?
A. $y=\frac{1}{2} x+4$
B. $y=x+4$
C. $y=2 x+4$
D. $y=4 x+2$

QUESTIONS

The figure above shows a right triangle with vertices at the origin, $(5,6)$ and $(k, 0)$. What is the value of k ?
A. $\frac{19}{3}$
B. $\frac{58}{5}$
C. $\frac{26}{3}$
$\mathrm{SA}^{\mathrm{R}} \mathrm{T}^{\frac{2}{0}}$

QUESTIONS

13. If m is a constant greater than 1 , which of the following could be the graph in the $x y$-plane of $\mathrm{x}+\mathrm{my}+\mathrm{m}=0$?
A.

B.

C.

D.

QUESTIONS

14. In the xy plane, which quadrant contains no point (x, y) that satisfies the inequality $\mathrm{y}-\mathrm{x}>2$?
A.I
B. II
C. III
D.IV

QUESTIONS

$$
\begin{aligned}
& 2 y<x \\
& y>3 x+1
\end{aligned}
$$

A system of inequalities and a graph are shown above. Which region or regions of the graph could represent the set of all ordered pairs that satisfy the system?
A. Region X
B. Region X and Z
C. Region X, Y and W
D. Region Z

QUESTIONS

16. $\mathrm{y}-\mathrm{x}<1$

$$
3 y>x+6
$$

In the xy plane, if the point with coordinates (a, b) lies in the solution set of the system of the inequalities above, which of the following relationships between a and b must be true?
A. $a>b$
B. $a<b$
C. $a b>0$
D. $a b<0$

QUESTIONS

17. $\mathrm{y}-\mathrm{x} \leq 1$

$$
3 y \geq x+6
$$

In the xy plane, if the point with coordinates (a, b) lies in the solution set of the system of the inequalities above, what is the minimum possible value of a ?

$Q A$

Thank you

